
Accelerated Mesh Computations for ALE-FEM based 3D free Surface
flows in GPU

Thivin Anandh1

Abstract— This project focuses on using GPU to accelerate
the mesh movement modules that comes in ALE based Finite
Element method. In this paper, we propose strategies to calcu-
late the mesh normals asynchronously in GPU by transferring
the Finite element Data from CPU to GPU and to factorise
the Mesh matrix in GPU asynchronously by overlapping that
computation with the Navier Stokes computation in GPU. We
have also discussed the timing difference between the direct
solver and the sparse GPU solvers and the existing limitations
in the lower level sparse Factorisation routines with less host
interventions.

I. INTRODUCTION
Arbitrary Lagrangian Based Finite Element method (ALE

-FEM) is one of the reliable methods for Solving incom-
presible Navier Stokes equation while trying to accurately
capture the interface. It captures the interface by moving
the free surface layer with the velocity of the fluid at free
Surface. In order to preserve the mesh quality , we need to
move the interior points of the mesh accordingly by either
solving the Poisson or linear elastic equation. However ,
this process is an additional step in CPU in solving the
incompressible Navier stokes equation. Additionally , we
need to impose constraints on the surface based on the nature
of the problem , which further needs the computation of
normals on the mesh surfaces. This process can be computed
in the GPU given the finite element data structures are being
transferred to the GPU . Further The Mesh Matrix can be
solved in GPU itself using any iterative Solver routines or
Factorisation Routines

II. MOTIVATION FOR PARALLELIZATION
The Motivation for parallelisation of these routines are

listed below
• The mesh movement routines except for the solver

routines is independent of the main NSE solver routine
• These routines , if properly channelised, can be trans-

ferred to the GPU and can be computed independent of
CPU.

• The Normal calculation computations can be done in
GPU such that they overlap the computation with CPU.

III. IMPLEMENTATION PREREQUISITES
To Aspects of parallelization of this process involves the

following criterion
• Select a best Sparse Solver routine for Solving the

system inside GPU.

*DS 295 - Parallel Programming - Course Project
1Thivin Anandh D - PhD Student of Department of Computational and

Data Sciences, Indian Institute of Science, India

• Figure out a way to transfer the complex FE data-
structures from CPU to GPU using arrays to calculate
the mesh normals.

• Modify existing algorithms to adapt the asynchronous
mode of proposed CPU-GPU asynchronous algorithm.

IV. PROPOSED MODEL - I

In this model , We propose to use GPU as an accelerator
to speed up the existing code by calculating the Mesh
parameters in GPU and provide that Solution to the CPU
to complete solution process (figure 1)

For this process, we need to figure out a way to transfer the
FE data structure to GPU and choose an iterative or direct
solver to compute the solution. Upon analysis of the time
taken for all the process in the mesh modules 5 the solver
process is taking most of the time. So it is necessary to find
an efficient solver either iterative or direct solver on the GPU
which could achieve an execution time lower than the CPU
sparse algorithms.

Fig. 2. Time Splitup - Mesh Modules

A. Performance comparison of Sparse CPU solvers vs
Sparse GPU Solvers

CuSparse and CuSolver routines are used for calculation
in these experiments. In case of sequential sparse solvers, we
have used UMFPACK and Intel MKL Pardiso’s Multifrontal
Sparse direct solver libraries. For GPU, we choose Sparse
QR for Direct Sparse Solvers and BiCGStab for iterative
Solver Routines. For CuSparse QR, METIS reordering is
performed in order to reduce the fill in’s and increase speed
up. The experiment is performed with the finite element
matrix obtained from the meshing module which is a sparse
matrix of size 14K × 14K with 997K non-zero elements.

Fig. 1. Proposed Model I - Timeline

The experiments are performed on the system with following
specifications mentioned in Table I.

TABLE I
CPU GPU SPECIFICATIONS

S.No Item Description
1 Processor Intel(R) Xeon(R) Gold 6150
2 RAM 160 GB
3 Number of Cores 18
4 NUmber of Threads 36
5 Base Frequency 3.70 GHz
6 L3 Cache 25 MB

S.No Item Description
1 Graphic Processor NVIDIA V100
2 Architecture Volta
3 CUDA Cores 5376
4 Graphics DRAM 16GB
5 CUDA Cores/SM 64

Fig. 3. Sparse CPU vs GPU Solvers

B. Inference

• As seen from the previous sections, solving the mesh
matrix inside GPU to accelerate the computations is not
a feasible option since the GPU execution times are
way higher than the execution time of standard CPU
libraries.

• We need to figure out other way of establishing par-
allelism apart from trying to solve the system in GPU
which is discussed in the next section.

V. PROPOSED MODEL - II

Upon analysis of the mesh module, we could observe
that, only the RHS of the mesh module (b) is dependent
on the solution of the NSE equation whereas the matrix (A)
is dependent only on the current state of the mesh . Using
this, we propose the following model as shown in Figure 4.

VI. PARALLEL IMPLEMENTATION

A. Implementation of FE Data Structures

• Since the FE data structure is complex, we begin by
filtering out only the required data necessary for our
mesh computation in CPU and then saving them in
relevant 1D arrays which can be sent to the GPU.

• In order for GPU to recognise those format’s easily,
we also create an mapping array for each element with
which the GPU threads can identify on which location
they need to pick their data from in the main FE arrays.

• Since the normal calculation for each type of boundary
surface is different, different CUDA streams are created
for each of them.

• All the data transfer related to those two process are
sent asynchronously in their respective streams.

• The streams are synchronised, before the point where
normal values are needed to complete the assembly of
mesh system matrix.

• Multiple thread blocks are used to split the task of
computing the normals.

B. Implementation of Factorisation Routines

There are no direct high level routines in CuSparse or
CuSolver or Magma libraries that allows us to store the
factors of the matrix so that the system can be solved in later
course of time. However in CuSolver, there are some low
level routines which can be used to obtain Q and R factors
(LU low level routines are not available) and save it in the
device, which can be used to solve the system later. There
were two such factorisation routines available in CuSolver
as below,

• Low-Level QR Factorisation
• LU Re-factorisation routines

C. Performance of the Factorisation Routines

The below plot shows the performance of the factorisation
routines compared with the existing routines. It seems that
the routines has more host intervention (host blocking calls
) in order to complete the factorisation i.e. most of the
prerequisite routines like pivoting, reordering, calculating the
storage Space and checking singularity of matrix are being
done in the host as blocking calls, which thwarts the speedup
of the application.

D. Performance Optimisation performed for QR Low Level
Libraries

In order to reduce the execution time, we tried to condense
and eliminate most of the host dependent process. As part
of the QR setup process, the following items are performed

on the host for setup of QR (These are low level CuSolver
Routines).

1) Obtain the matrix and perform reordering using
METIS routines and obtain the reordering

2) Using the reordering compute the Permutation matrix
of the given input Matrix

3) Create and allocate buffer(opaque data structure) for
QR routines to operate on GPU and initialise the
CUDA QR handle

4) Setup CUDA routine and compute the factorisation
However, the following process can be simplified by

making the following logical assumptions. Since the FE mesh
Matrix does not change its structure (Sparsity pattern) and the
non-zero elements locations remains same, the Reordering
will be same for all matrices and the same will be for
permutation matrix. In that case, the memory (opaque data
structure) needed by GPU to factorise will be same for every
Iteration. These statements can lead us to the conclusion that
we need to perform steps 1-4 (Completely executed on host)
for the first iteration only , and after that we can save the
data in such a way that we only need to perform step 4 for
the upcoming matrices.

Note : This optimisation was not included in any of
the example routines or any high/low level QR routines of
CuSolver library. This was added as part of this project
to reduce host intervention for our problem to increase
parallelism.

Fig. 5. Sparse CPU vs GPU Refactorisation Routines

E. Inferences from analysis on GPU Refactorisation routines

• The optimisation performed for QR routines showed a
significant reduction in the setup phase of the routine

• The QR factorisation cannot be used for our setup.
Though the factorisation time can be completely over-
shadowed by the CPU execution, the solving time of
QR is alone higher than the CPU’s total solver time. 9

• We can use LU-Refactorisation routines for our problem
since that is the one that gives very close timing to our
Sequential counterparts.

Fig. 4. Proposed Model II - Timeline

Note : The time taken for LU factorisation in CPU is not
being included for calculation since it is done for one time
at the start of the process

VII. SPEEDUP OBTAINED

The following figure shows the speed up of using CUDA
threads for Computation of Normals in Sequential vs Parallel
(Figure 9)

Fig. 7. Speedup - Normal Computation

The following figure shows the speedup of computations

using CUDA Re-factorisation routines. (Figure 8)

Fig. 8. Speedup - using CUDA Refactorisation

VIII. RESULT ANALYSIS

1) The lower speed up obtained at Computing mesh
normals is due to the fact that , Finite element routines
are mostly thread Divergent since that part involves
more conditional statements like if and switch cases.

2) The achieved speedup was due to the fact that for non
linear sub iterations only rhs changes at each sub step

Fig. 6. NVProf - Timeline - QR Factorisation

there by eliminating the re factorisation routine and
uses only solve routine at those steps.

3) Further analysis with Nvprof showed that the increased
time is due to the fact that the Re-factorization
routine is executed in Blocking call rather than
being executed as an Asynchronous kernel Call (
Figure 9)

Note : The Blocking behaviour of CudaRF routine is
due to the fact that there is no provision given to in-
corporate a CUDA stream into an CUDA Refactor han-
dle.[Source : CUDA Documentation and checked in cu-
daRefactor.h for that function]. This feature is available
only for CuSparse (BLAS Routines) and Dense Ma-
trix routines only. Upon Checking the NVIDIA Forum ,
this question regarding the usage of streams with CUDA
RF routines is currently unanswered as of Jun-14-2020.
URL : https://forums.developer.nvidia.com/t/why-cusolverrf-
doesnt-support-stream-setting/66018

IX. CONCLUSIONS

• The Objective of this project was not only use the GPU
as an accelerator to speed up the existing computation
but also to asynchronously execute FE computations by
overlapping them with the current CPU computations
,which was achieved

• The Partial import of FE Data Structures can be ex-
panded further to transfer more FE data to GPU , which
can be used for Solving Rigid Body equations in FSI
Problems at GPU itself.

• If a non-blocking stream can be incorporated into
CudaRF routines, then the Speedups can be massively
increased.

Fig. 9. NvProf - Timeline - CUDA Sparse LU Re-factorisation

